Showing posts with label Compose. Show all posts
Showing posts with label Compose. Show all posts

Coroutines, RxJava, or Traditional Approach: Which is Better for Android Kotlin Compose?

When building Android applications, managing background tasks, handling asynchronous operations, and managing UI state can be a complex and error-prone task. Over the years, Android developers have adopted various approaches to handle these challenges. Today, we will dive into three prominent ways of handling concurrency and state management in Android using Kotlin and Jetpack Compose:

Each approach has strengths and weaknesses, and understanding when and why to use them will help you choose the right tool for your application.

1. Coroutines: The Modern Solution

What Are Coroutines?

Coroutines are Kotlin's built-in solution for handling asynchronous tasks more efficiently and readably. A coroutine is a lightweight thread that can be paused and resumed, making it ideal for handling asynchronous programming without blocking threads.

Coroutines are built into Kotlin and integrate well with Jetpack Compose. They allow developers to write asynchronous code sequentially, improving readability and maintainability. You can use Kotlin’s suspend functions to handle asynchronous operations, and Flow for reactive streams.

Why Use Coroutines?

  • Simplicity: The syntax is concise, and the code flows sequentially. It’s easier to read and manage, especially when combined with Kotlin’s suspend functions and Flow.
  • Efficiency: Coroutines are much more lightweight than threads. They can scale efficiently with minimal overhead, making them ideal for background operations in Android apps.
  • Built for Android: Coroutines, with official Android support and integrations like ViewModel, LiveData, and Room, work seamlessly with Jetpack Compose and other Android Jetpack components.
  • Integration with Jetpack Compose: Coroutines fit naturally with Jetpack Compose, allowing you to perform background tasks and update the UI without complex threading or lifecycle management.

Example: Using Coroutines in Jetpack Compose

@Composable
fun UserDataScreen() {
    val userData = remember { mutableStateOf("") }
    
    // Launching a coroutine for background work
    LaunchedEffect(Unit) {
        userData.value = getUserDataFromApi() // Suspend function
    }
    
    Text(text = userData.value)
}

suspend fun getUserDataFromApi(): String {
    delay(1000) // Simulate network call
    return "User Data"
}

When to Use Coroutines:

  • For modern Android development where simplicity, performance, and integration with Jetpack Compose are priorities.
  • When handling long-running background tasks or managing UI updates without blocking the main thread.

2. RxJava: The Reactive Approach

What Is RxJava?

RxJava is a popular library for reactively handling asynchronous programming. It is built around the concept of observable streams that emit values over time. RxJava uses concepts like Observable, Single, and Flowable to deal with data streams and asynchronous operations.

While Coroutines have become more popular, RxJava is still widely used, particularly in legacy applications or projects needing complex event-driven architectures.

Why Use RxJava?

  • Reactive Programming: RxJava is built around the principles of reactive programming. It’s ideal for scenarios where you must observe and react to data streams, such as network responses, user input, or sensor data.
  • Flexibility: With a vast set of operators, RxJava provides fine-grained control over data streams. You can combine, filter, merge, and transform streams.
  • Mature Ecosystem: RxJava has been around for a long time and has a strong ecosystem and community. It is well-documented and used in a wide variety of applications.

Example: Using RxJava in Jetpack Compose

@Composable
fun UserDataScreen() {
    val userData = remember { mutableStateOf("") }

    val disposable = Observable.fromCallable { getUserDataFromApi() }
        .subscribeOn(Schedulers.io()) // Run on background thread
        .observeOn(AndroidSchedulers.mainThread()) // Observe on UI thread
        .subscribe { data -> 
            userData.value = data
        }
    
    Text(text = userData.value)
}

fun getUserDataFromApi(): String {
    Thread.sleep(1000) // Simulate network call
    return "User Data"
}

When to Use RxJava:

  • For applications needing advanced stream manipulation, especially in complex asynchronous events.
  • When working with an existing codebase that already uses RxJava, or when you require extensive handling of multiple data streams.

3. The Traditional Approach (Callbacks, AsyncTasks)

What Is the Traditional Approach?

Before Coroutines and RxJava, Android developers used traditional ways like AsyncTask, Handler, and Callbacks to handle background work. While this approach is still used in some cases, it is generally considered outdated and prone to issues, especially in complex apps.

  • AsyncTask: Handles background tasks and post-execution UI updates.
  • Callbacks: Functions passed as parameters to be executed asynchronously.
  • Handler: Post messages or tasks to a thread’s message queue.

Why Avoid the Traditional Approach?

  • Callback Hell: Callbacks often result in nested functions, making the code harder to read, maintain, and debug. This is commonly referred to as “callback hell.”
  • Limited Flexibility: Traditional methods like AsyncTask don’t provide the flexibility and power of RxJava or Coroutines when dealing with complex data streams or managing concurrency.
  • Lifecycle Issues: Traditional approaches to managing the lifecycle of background tasks in Android can be error-prone, especially when handling configuration changes like device rotations.

Example: Using AsyncTask (Outdated)

class UserDataTask : AsyncTask<Void, Void, String>() {
    override fun doInBackground(vararg params: Void?): String {
        // Simulate network call
        Thread.sleep(1000)
        return "User Data"
    }
    
    override fun onPostExecute(result: String?) {
        super.onPostExecute(result)
        // Update UI
        userData.value = result
    }
}

When to Avoid the Traditional Approach:

  • When building modern Android apps using Kotlin, Jetpack Compose, and requiring efficient, readable, and maintainable code.
  • For complex asynchronous operations that involve multiple threads, streams, or require lifecycle-aware handling.

Conclusion: Which One to Choose?

  • Coroutines are the preferred choice for modern Android development with Kotlin and Jetpack Compose. They are lightweight, concise, and integrate well with the Android lifecycle.
  • RxJava is excellent if you're working with complex data streams, need advanced operators for manipulating streams, or deal with a legacy codebase that already uses RxJava.
  • The traditional approach is best avoided for modern Android development due to its limitations in handling asynchronous tasks, complex UI updates, and maintaining clean code.

Coroutines should be the preferred solution for most Android apps built with Jetpack Compose. They provide simplicity, performance, and compatibility with modern Android development practices.

Thanks for reading! ๐ŸŽ‰ I'd love to know what you think about the article. Did it resonate with you? ๐Ÿ’ญ Any suggestions for improvement? I’m always open to hearing your feedback to improve my posts! ๐Ÿ‘‡๐Ÿš€. Happy coding! ๐Ÿ’ป✨


Cheat sheet for using Kotlin Coroutines with Flow in Jetpack Compose Android

 Here’s a cheat sheet for using Kotlin Coroutines with Flow in Android Jetpack Compose:

1. Basic Setup

To use Flow, ensure you have the following dependencies in your build.gradle:

dependencies {
    implementation "org.jetbrains.kotlinx:kotlinx-coroutines-core:1.6.0"
    implementation "org.jetbrains.kotlinx:kotlinx-coroutines-android:1.6.0"
    implementation "androidx.lifecycle:lifecycle-runtime-ktx:2.3.1"
}

2. Creating a Flow

You can create a Flow using the flow builder:

fun getData(): Flow<String> = flow {
    emit("Loading data...") // Emit a value
    delay(1000)
    emit("Data fetched successfully") // Emit another value
}

3. Collecting Data in Compose

In Jetpack Compose, use LaunchedEffect or collectAsState to collect the Flow and update the UI reactively.

With LaunchedEffect (Ideal for side-effects):

@Composable
fun DataDisplay() {
    val dataFlow = getData()
    
    LaunchedEffect(dataFlow) {
        dataFlow.collect { data ->
            // Handle the data and update UI accordingly
            Log.d("FlowData", data)
        }
    }
}

With collectAsState (Ideal for UI updates):

@Composable
fun DataDisplay() {
    val dataFlow = getData().collectAsState(initial = "Loading...")

    Text(text = dataFlow.value) // Display the collected data
}

4. State and Flow

If you need to expose a Flow inside a ViewModel:

class MyViewModel : ViewModel() {
    private val _dataFlow = MutableStateFlow("Loading...")
    val dataFlow: StateFlow<String> = _dataFlow

    init {
        viewModelScope.launch {
            delay(1000)  // Simulate data loading
            _dataFlow.value = "Data loaded!"
        }
    }
}

5. Flow Operators

Flow provides a set of operators to transform, filter, or combine flows.

map:

fun getUpperCaseData(): Flow<String> {
    return getData().map { it.toUpperCase() }
}

filter:

fun getFilteredData(): Flow<String> {
    return getData().filter { it.contains("Data") }
}

catch:

Handles errors in the flow.

fun safeGetData(): Flow<String> = flow {
    emit("Start fetching data...")
    throw Exception("Error while fetching data")
}.catch { exception ->
    emit("Error: ${exception.message}")
}

collectLatest:

Collect the latest value, cancelling the previous collection if a new value arrives.

LaunchedEffect(Unit) {
    getData().collectLatest { value ->
        // Handle the latest value
    }
}

6. Flow vs LiveData

  • Flow is more powerful for reactive programming, allowing better control and advanced operators.
  • LiveData is a lifecycle-aware data holder, and StateFlow can be used similarly in Compose.

7. Flow for Paging

Paging data can be fetched using a Flow. You can use the Paging library in combination with Flow to stream paginated data.

val pager = Pager(PagingConfig(pageSize = 20)) {
    MyPagingSource()
}.flow.cachedIn(viewModelScope)

8. Using stateIn to Convert Flow to StateFlow

If you need to convert a Flow into a StateFlow, you can use stateIn to collect it in a StateFlow.

val stateFlow = getData().stateIn(viewModelScope, SharingStarted.Lazily, "Initial value")

9. Handling Multiple Flows

You can combine multiple flows using operators like combine or zip.

val flow1 = flowOf("Data 1")
val flow2 = flowOf("Data 2")
val combinedFlow = combine(flow1, flow2) { data1, data2 ->
    "$data1 - $data2"
}

10. Error Handling

Flows provide a way to handle errors using catch and onEach.

fun getDataWithErrorHandling(): Flow<String> = flow {
    emit("Fetching data")
    throw Exception("Data fetch failed")
}.catch { exception ->
    emit("Error: ${exception.message}")
}

11. Timeouts

You can also apply timeouts to a flow, canceling it if it takes too long:

val result = withTimeoutOrNull(2000) {
    flowOf("Data fetched").collect()
}

12. Flow in ViewModel

Example of using Flow in a ViewModel for UI data:

class MyViewModel : ViewModel() {
    private val _myFlow = MutableStateFlow("Initial value")
    val myFlow: StateFlow<String> = _myFlow

    init {
        viewModelScope.launch {
            delay(2000)  // Simulate a delay
            _myFlow.value = "Updated value"
        }
    }
}

This is a basic guide to help you get started with Coroutines and Flow in Jetpack Compose. You can extend these patterns as needed based on the complexity of your application.

Displaying a Custom List Using MVVM Architecture with Jetpack Compose in Android Kotlin

 In Android development, organizing your code in a structured way is essential for scalability and maintainability. One of the most popular architectural patterns for Android apps is MVVM (Model-View-ViewModel). MVVM helps you separate concerns and enhances testability, making your code more manageable. In this post, we’ll learn how to display a custom list using MVVM architecture with Jetpack Compose, Kotlin, and Coroutines.

What We Will Build

We will create an Android app using Jetpack Compose to display a custom list of data (for example, a list of users or items). The app will use MVVM to separate the UI, data handling, and business logic. The app will also use Kotlin Coroutines for asynchronous operations like fetching data from a network or a local database.

Prerequisites

  • Basic knowledge of Jetpack Compose, MVVM architecture, and Kotlin.
  • Android Studio installed with Kotlin support.

Steps to Build the Custom List App with MVVM and Coroutines

Let’s break this down into the following steps:

  1. Create the Data Model: Define the data you want to display in the list.
  2. Create the Repository: Handle data fetching, either from a network or a local database.
  3. Create the ViewModel: Expose the data to the UI and manage UI-related data.
  4. Create the Composables: Use Jetpack Compose to create the UI that observes the ViewModel.

1. Create the Data Model

The data model represents the data structure that will be displayed in the list. In this case, we will define a simple User data model.

data class User(val id: Int, val name: String, val email: String)

This model will be used to represent individual items in the list.


2. Create the Repository

In the MVVM architecture, the Repository is responsible for managing data and fetching it from different sources (e.g., network, local database). Here’s an example of a simple repository using a suspended function (asynchronous operation) to simulate fetching data from a remote API.

import com.example.test.data.User
import kotlinx.coroutines.delay

class UserRepository {
    // Simulate fetching data asynchronously
    suspend fun getUsers(): List<User> {
        // Simulating network delay using a delay function
        delay(2000) // Simulating a network call delay
        return listOf(
            User(1, "John Doe", "johndoe@example.com"),
            User(2, "Jane Smith", "janesmith@example.com"),
            User(3, "Alex Johnson", "alexjohnson@example.com"),
            User(4, "Mark john", "markjohn@example.com"),
            User(5, "Bill laste", "billlaste@example.com"),
            User(6, "Deep lucifer", "deeplucifer@example.com"),
            User(7, "Kora Frank", "korafrank@example.com"),
            User(8, "Atticus Austin", "atticusaustin@example.com"),
            User(9, "Eve Reese", "evereese@example.com"),
            User(10, "Scarlet Frost", "scarletfrost@example.com"),
            User(11, "Nyla Martin", "nylamartin@example.com"),
            User(12, "Tony Moran", "tonymoran@example.com"),
            User(13, "Rudy Escobar", "rudyescobar@example.com"),
            User(14, "Waverly Clay", "waverlyclay@example.com"),
            User(15, "Zev Velez", "zevvelez@example.com")
        )
    }
}

This repository will return a list of User objects after a simulated network delay.


3. Create the ViewModel

The ViewModel is responsible for handling the UI-related data and business logic. It acts as a bridge between the Repository and the UI. The ViewModel will call the UserRepository to fetch the list of users asynchronously using Kotlin Coroutines.

import androidx.lifecycle.LiveData
import androidx.lifecycle.MutableLiveData
import androidx.lifecycle.ViewModel
import androidx.lifecycle.viewModelScope
import com.example.test.data.User
import com.example.test.respository.UserRepository
import kotlinx.coroutines.launch

class UserViewModel : ViewModel() {
    private val userRepository = UserRepository()

    private val _users = MutableLiveData<List<User>>()
    val users: LiveData<List<User>> get() = _users

    fun fetchUsers() {
        viewModelScope.launch {
            val userList = userRepository.getUsers()
            _users.postValue(userList)
        }
    }
}

In the UserViewModel:

  • We use viewModelScope.launch to launch a coroutine in the ViewModel’s scope, ensuring that the coroutine will be cancelled when the ViewModel is cleared.
  • We fetch the data asynchronously from the repository and post the data to the LiveData object (_users), which is then observed by the UI.

4. Create the Composables

Now, let’s use Jetpack Compose to create the UI. We will display the list of users in a LazyColumn, which is the Compose equivalent of a RecyclerView. The UI will observe the LiveData exposed by the ViewModel.

Main Screen Composable

import androidx.lifecycle.viewmodel.compose.viewModel

@Composable
fun UserListScreen(userViewModel: UserViewModel = viewModel()) {
    // Observe the users LiveData from ViewModel
    val users by userViewModel.users.observeAsState(emptyList())

    // Fetch users when the composable is first displayed
    LaunchedEffect(Unit) {
        userViewModel.fetchUsers()
    }

    // Display the list of users
    LazyColumn(modifier = Modifier.fillMaxSize()) {
        items(users) { user ->
            UserItem(user)
        }
    }
}

@Composable
fun UserItem(user: User) {
    val context = LocalContext.current
    Card(
        modifier = Modifier
            .fillMaxWidth()
            .padding(16.dp)
            .clickable {
                Toast.makeText(context, user.name, Toast.LENGTH_SHORT).show()
            },
        elevation = CardDefaults.cardElevation(4.dp),
        shape = RoundedCornerShape(8.dp)
    ) {
        Column(
            modifier = Modifier.padding(16.dp)
        ) {
            Text(text = user.name, style = MaterialTheme.typography.headlineMedium)
            Text(text = "Email: ${user.email}", style = MaterialTheme.typography.bodyMedium)
        }
    }
}

Key Points:

  • We use observeAsState to observe changes to the users LiveData.
  • The LazyColumn is used to display the list of users in a scrollable view. It’s efficient and only renders the items that are visible on screen, similar to RecyclerView.
  • Each UserItem is displayed in a Card with padding and elevation.

Putting It All Together

In your MainActivity, you can set the UserListScreen composable to display the data.

class MainActivity : ComponentActivity() {
    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        enableEdgeToEdge()
        setContent {
            TestTheme {
                // Provide UserViewModel using the viewModel() function
                UserListScreen()
            }
        }
    }
}

Now, when the app runs, it will fetch the list of users asynchronously using Kotlin Coroutines and display the list in Jetpack Compose.



Conclusion

By following the steps above, we successfully built an app that displays a custom list of users using MVVM architecture, Jetpack Compose, and Kotlin Coroutines.

This pattern is not only clean and testable but also provides a seamless separation of concerns between the UI, business logic, and data management. Using LiveData, viewModelScope, and Jetpack Compose ensures a reactive UI that updates automatically when data changes, all while maintaining good performance and keeping the codebase manageable.

With Jetpack Compose's declarative approach, building UIs becomes easier and more intuitive, and combining it with MVVM and Coroutines ensures that your app remains scalable and maintainable.

I appreciate you taking the time to read my latest post! ๐Ÿ™ I’m always looking to improve, so your feedback would be incredibly helpful. What did you think of the content? Was there anything that could be better explained? Let me know in the comments! ๐Ÿ‘‡๐ŸŒŸ”. Happy coding! ๐Ÿ’ป✨

Sudoku Puzzle Image with Jetpack Compose

 To create a Sudoku puzzle image programmatically in Kotlin, you can use libraries such as Android Canvas or Jetpack Compose. Below is an example using Jetpack Compose, which is a modern toolkit for building Android UI.


Sudoku Puzzle Image with Jetpack Compose

This code draws a 9x9 Sudoku grid with some numbers pre-filled.

import android.os.Bundle
import androidx.activity.ComponentActivity
import androidx.activity.compose.setContent
import androidx.compose.foundation.Canvas
import androidx.compose.foundation.layout.*
import androidx.compose.runtime.Composable
import androidx.compose.ui.Modifier
import androidx.compose.ui.graphics.Color
import androidx.compose.ui.graphics.Paint
import androidx.compose.ui.text.TextStyle
import androidx.compose.ui.unit.dp
import androidx.compose.ui.unit.sp
import androidx.compose.foundation.text.BasicText

class SudokuActivity : ComponentActivity() {
    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        setContent {
            SudokuGrid()
        }
    }
}

@Composable
fun SudokuGrid() {
    val puzzle = arrayOf(
        charArrayOf('5', '3', '.', '.', '7', '.', '.', '.', '.'),
        charArrayOf('6', '.', '.', '1', '9', '5', '.', '.', '.'),
        charArrayOf('.', '9', '8', '.', '.', '.', '.', '6', '.'),
        charArrayOf('8', '.', '.', '.', '6', '.', '.', '.', '3'),
        charArrayOf('4', '.', '.', '8', '.', '3', '.', '.', '1'),
        charArrayOf('7', '.', '.', '.', '2', '.', '.', '.', '6'),
        charArrayOf('.', '6', '.', '.', '.', '.', '2', '8', '.'),
        charArrayOf('.', '.', '.', '4', '1', '9', '.', '.', '5'),
        charArrayOf('.', '.', '.', '.', '8', '.', '.', '7', '9')
    )

    Box(Modifier.fillMaxSize().padding(16.dp)) {
        Canvas(modifier = Modifier.fillMaxSize()) {
            val gridSize = size.width
            val cellSize = gridSize / 9f

            val paint = Paint().apply { color = Color.Black }

            // Draw the grid lines
            for (i in 0..9) {
                val lineWidth = if (i % 3 == 0) 6f else 2f
                drawLine(
                    start = androidx.compose.ui.geometry.Offset(i * cellSize, 0f),
                    end = androidx.compose.ui.geometry.Offset(i * cellSize, gridSize),
                    paint.apply { strokeWidth = lineWidth }
                )
                drawLine(
                    start = androidx.compose.ui.geometry.Offset(0f, i * cellSize),
                    end = androidx.compose.ui.geometry.Offset(gridSize, i * cellSize),
                    paint.apply { strokeWidth = lineWidth }
                )
            }
        }

        // Fill the grid with numbers
        for (row in puzzle.indices) {
            for (col in puzzle[row].indices) {
                val number = puzzle[row][col]
                if (number != '.') {
                    BasicText(
                        text = number.toString(),
                        style = TextStyle(color = Color.Black, fontSize = 20.sp),
                        modifier = Modifier
                            .offset(x = (col * (size / 9f)).dp, y = (row * (size / 9f)).dp)
                    )
                }
            }
        }
    }
}

How It Works:

  1. Grid Drawing:
    The Canvas composable is used to draw the Sudoku grid. Thicker lines are drawn every three cells to demarcate the 3x3 sub-grids.

  2. Number Placement:
    A nested loop iterates over the puzzle array and places numbers using BasicText at the correct cell coordinates.

  3. Customizations:

    • Grid Size: Automatically adapts to the screen.
    • Font Size and Style: Easily customizable for better visuals.

Output:

  • A 9x9 Sudoku grid is displayed, with the given puzzle pre-filled.
  • The grid uses clear lines and neatly places numbers in their respective cells.


This example provides a dynamic, scalable, and modern approach for creating Sudoku images directly in an Android app.

How to Implement Ktor in Android Apps Using MVVM Clean Architecture, Jetpack Compose, and Kotlin Coroutines

Ktor is a Kotlin-native framework that enables developers to create asynchronous HTTP clients and servers. In this article, we'll walk you through implementing Ktor in an Android project structured around MVVM Clean Architecture, leveraging Jetpack Compose for UI and Kotlin Coroutines and Flow for data handling.



Prerequisites

Before starting, ensure you are familiar with:

  • Kotlin programming
  • MVVM Clean Architecture
  • Jetpack Compose for UI
  • Dependency Injection with Hilt
  • Coroutines and Flows

Step 1: Set Up Your Android Project

  1. Create a new Android project in Android Studio.

    • Choose Jetpack Compose in the project setup wizard.
    • Select Kotlin as the programming language.
  2. Add Dependencies
    Open your app/build.gradle file and include the following libraries:

    
dependencies {
    // Ktor for HTTP requests
    implementation("io.ktor:ktor-client-core:2.0.0")
    implementation("io.ktor:ktor-client-cio:2.0.0")
    implementation("io.ktor:ktor-client-content-negotiation:2.0.0")
    implementation("io.ktor:ktor-serialization-kotlinx-json:2.0.0")

    // Kotlin Coroutines
    implementation("org.jetbrains.kotlinx:kotlinx-coroutines-android:1.7.3")

    // Jetpack Compose
    implementation("androidx.compose.ui:ui:1.5.0")
    implementation("androidx.lifecycle:lifecycle-runtime-compose:2.6.1")

    // Hilt for Dependency Injection
    implementation("com.google.dagger:hilt-android:2.47")
    kapt("com.google.dagger:hilt-compiler:2.47")

    // Testing libraries (optional)
    testImplementation("junit:junit:4.13.2")
    androidTestImplementation("androidx.compose.ui:ui-test-junit4:1.5.0")
}
  1. Enable Kotlin Serialization
    In your build.gradle (project-level), enable the Kotlin serialization plugin:
plugins {
    id("org.jetbrains.kotlin.plugin.serialization") version "1.9.10"
}

Step 2: Define the Clean Architecture Layers

Clean Architecture organizes the code into layers to improve scalability and maintainability. These layers include Presentation, Domain, and Data.


Data Layer

The Data Layer handles communication with APIs and maps responses into domain models.

  1. Define API Endpoints

Create a KtorService interface to abstract Ktor HTTP calls:

interface KtorService {
    suspend fun fetchItems(): List<ItemDto>
}
  1. Implement KtorService

Here, we configure Ktor and handle the API interaction:

class KtorServiceImpl : KtorService {
    private val client = HttpClient(CIO) {
        install(ContentNegotiation) {
            json() // Enable JSON serialization
        }
    }

    override suspend fun fetchItems(): List&lt;ItemDto&gt; {
        return client.get("https://api.example.com/items").body()
    }
}
  1. Define DTO and Mappers

Define a Data Transfer Object (DTO) to represent API responses and map it to a domain model.

@Serializable
data class ItemDto(
    val id: String,
    val name: String
)

fun ItemDto.toDomain(): Item = Item(id, name)
  1. Repository

Create a repository to abstract data sources and expose flows:

class ItemRepository(private val service: KtorService) {
    suspend fun getItems(): Flow<List<Item>> = flow {
        try {
            val response = service.fetchItems()
            emit(response.map { it.toDomain() }) // Convert DTO to domain model
        } catch (e: Exception) {
            emit(emptyList()) // Handle errors gracefully
        }
    }
}

Domain Layer

The Domain Layer contains business logic and is independent of the framework.

  1. Define Domain Model

Create the domain model for your app:

data class Item(
    val id: String,
    val name: String
)
  1. Implement Use Case

A use case encapsulates a single piece of functionality:

class GetItemsUseCase(private val repository: ItemRepository) {
    operator fun invoke(): Flow<List<Item>> {
        return repository.getItems()
    }
}

Presentation Layer

The Presentation Layer manages UI state and user interactions.

  1. Create ViewModel

Use ViewModel to expose data to the UI:

@HiltViewModel
class ItemViewModel @Inject constructor(
    private val getItemsUseCase: GetItemsUseCase
) : ViewModel() {
    private val _itemsState = MutableStateFlow<List<Item>>(emptyList())
    val itemsState: StateFlow<List<Item>> = _itemsState

    init {
        fetchItems()
    }

    private fun fetchItems() {
        viewModelScope.launch {
            getItemsUseCase().collect { items ->
                _itemsState.value = items
            }
        }
    }
}
  1. Compose UI

Use Jetpack Compose to create the UI:

@Composable
fun ItemListScreen(viewModel: ItemViewModel = hiltViewModel()) {
    val items by viewModel.itemsState.collectAsState()

    LazyColumn {
        items(items) { item ->
            Text(
                text = item.name,
                style = MaterialTheme.typography.body1,
                modifier = Modifier.padding(16.dp)
            )
        }
    }
}

Step 3: Set Up Dependency Injection

Use Hilt to inject dependencies across layers.

  1. Setup Hilt

Annotate your application class:

@HiltAndroidApp
class MyApp : Application()
  1. Provide Dependencies

Create an Hilt module:

@Module
@InstallIn(SingletonComponent::class)
object AppModule {
    @Provides
    fun provideKtorService(): KtorService = KtorServiceImpl()

    @Provides
    fun provideRepository(service: KtorService): ItemRepository = ItemRepository(service)

    @Provides
    fun provideGetItemsUseCase(repository: ItemRepository): GetItemsUseCase = GetItemsUseCase(repository)
}

Step 4: Handle State and Error Management

In a real-world app, you must handle API states (loading, success, error) gracefully.

  1. Update ViewModel

Add a state to track the API status:

data class UiState(
    val isLoading: Boolean = false,
    val items: List<Item> = emptyList(),
    val error: String? = null
)

@HiltViewModel
class ItemViewModel @Inject constructor(
    private val getItemsUseCase: GetItemsUseCase
) : ViewModel() {
    private val _uiState = MutableStateFlow(UiState())
    val uiState: StateFlow<UiState> = _uiState

    init {
        fetchItems()
    }

    private fun fetchItems() {
        viewModelScope.launch {
            _uiState.value = UiState(isLoading = true)
            getItemsUseCase().collect { items ->
                _uiState.value = UiState(items = items)
            }
        }
    }
}
  1. Compose UI with State

Display states in the UI:

@Composable
fun ItemListScreen(viewModel: ItemViewModel = hiltViewModel()) {
    val state by viewModel.uiState.collectAsState()

    when {
        state.isLoading -> CircularProgressIndicator()
        state.error != null -> Text("Error: ${state.error}")
        else -> LazyColumn {
            items(state.items) { item ->
                Text(text = item.name)
            }
        }
    }
}

Step 5: Test Your App

Run the app and verify that:

  • Items load from the API.
  • UI updates automatically when data changes.

Conclusion

By combining Ktor, MVVM Clean Architecture, Jetpack Compose, and Kotlin Coroutines, you create a scalable, testable, and maintainable Android app. Expand on this foundation by adding advanced features like offline caching, user authentication, or detailed error reporting.

Happy coding! ๐Ÿš€

Implementing Hilt in a Kotlin Android Jetpack Compose Project with MVVM Architecture

 In modern Android development, maintaining a scalable codebase can be challenging, especially when it comes to dependency management. Hilt, which is built on top of Dagger, is a powerful dependency injection library that helps streamline dependency management. In this article, we'll explore how to implement Hilt in a Kotlin Android project using Jetpack Compose and the MVVM (Model-View-ViewModel) architecture.

This guide will cover all the necessary steps—setting up Hilt, integrating it into MVVM, and using it to manage dependencies seamlessly throughout your app. Let's dive in!



Step 1: Add Dependencies

First, we need to add the necessary Hilt dependencies to our project.

In your project-level build.gradle file, include the Hilt Gradle plugin:

buildscript {
    dependencies {
        classpath 'com.google.dagger:hilt-android-gradle-plugin:2.x.x' // Replace with the latest version
    }
}

In your app-level build.gradle, add the following dependencies:

plugins {
    id 'com.android.application'
    id 'org.jetbrains.kotlin.android'
    id 'dagger.hilt.android.plugin' // Add this
}

android {
    ...
}

dependencies {
    // Hilt dependencies
    implementation "com.google.dagger:hilt-android:2.x.x" // Replace with the latest version
    kapt "com.google.dagger:hilt-android-compiler:2.x.x"

    // ViewModel for Jetpack Compose
    implementation "androidx.hilt:hilt-lifecycle-viewmodel:1.x.x" // Latest Hilt ViewModel support
    kapt "androidx.hilt:hilt-compiler:1.x.x"
    
    // Other dependencies like lifecycle, Jetpack Compose, etc.
    implementation "androidx.lifecycle:lifecycle-viewmodel-ktx:2.x.x"
    implementation "androidx.activity:activity-compose:1.x.x"
}

Step 2: Apply the Hilt Plugin

To use Hilt in your project, you need to apply the Hilt plugin in your app-level build.gradle file:

apply plugin: 'dagger.hilt.android.plugin'

Step 3: Initialize Hilt in the Application Class

Next, create an application class and annotate it with @HiltAndroidApp. This annotation will allow Hilt to manage dependency injection at the application level:

@HiltAndroidApp
class MyApp : Application() {
    // This will allow Hilt to perform dependency injection
}

Be sure to declare this application class in your AndroidManifest.xml:

<application
    android:name=".MyApp"
    ...>
    ...
</application>

Step 4: Create the ViewModel and Repository

With MVVM architecture, the Repository is responsible for handling data operations, while the ViewModel serves as an intermediate layer between the UI and the repository.

Repository Example:

class MyRepository @Inject constructor(
    private val apiService: ApiService // Injecting the service to fetch data from API
) {
    fun fetchData(): Flow<Data> {
        // Example repository function
        return apiService.getData()
    }
}

Annotate your ViewModel with @HiltViewModel so Hilt can manage its dependencies:

@HiltViewModel
class MyViewModel @Inject constructor(
    private val repository: MyRepository
) : ViewModel() {

    private val _data = MutableStateFlow<Data?>(null)
    val data: StateFlow<Data?> = _data

    init {
        viewModelScope.launch {
            repository.fetchData().collect {
                _data.value = it
            }
        }
    }
}

Step 5: Provide Dependencies Using Hilt Modules

You need to create a Hilt module to provide dependencies like Retrofit or any other services you use in your project.

@Module
@InstallIn(SingletonComponent::class)
object AppModule {

    @Provides
    @Singleton
    fun provideRetrofit(): Retrofit {
        return Retrofit.Builder()
            .baseUrl("https://api.example.com/")
            .addConverterFactory(GsonConverterFactory.create())
            .build()
    }

    @Provides
    @Singleton
    fun provideApiService(retrofit: Retrofit): ApiService {
        return retrofit.create(ApiService::class.java)
    }
}

This module provides the necessary dependencies for Retrofit and ApiService, allowing them to be injected into other parts of your app.

Step 6: Use ViewModel in Composables

To use your ViewModel in a Jetpack Compose screen, you can inject the ViewModel via Hilt using the hiltViewModel() function:

@Composable
fun MyScreen(
    viewModel: MyViewModel = hiltViewModel() // Injecting ViewModel
) {
    val data by viewModel.data.collectAsState()

    Column(modifier = Modifier.fillMaxSize()) {
        Text(text = data?.toString() ?: "Loading...")
    }
}

Step 7: MainActivity Setup

Finally, annotate your MainActivity with @AndroidEntryPoint to let Hilt know that this activity needs dependency injection:

@AndroidEntryPoint
class MainActivity : ComponentActivity() {
    override fun onCreate(savedInstanceState: Bundle?) {
        super.onCreate(savedInstanceState)
        setContent {
            MyScreen()
        }
    }
}

Summary of Components

  1. Dependencies: Add Hilt and related dependencies in your build.gradle file.

  2. Application Class: Annotate your application class with @HiltAndroidApp.

  3. ViewModel: Annotate with @HiltViewModel and inject the repository.

  4. Repository: Handle your data operations and use constructor injection.

  5. Hilt Module: Use @Module and @Provides to provide dependencies (e.g., Retrofit).

  6. MainActivity and Composables: Use @AndroidEntryPoint and hiltViewModel() to inject dependencies.

Conclusion

Using Hilt for dependency injection in a Kotlin Android Jetpack Compose project with MVVM architecture significantly improves code readability and scalability. Hilt makes it easy to manage dependencies, especially in projects that grow complex over time, by providing seamless injections and simplifying boilerplate setup. Following the steps outlined in this article will help you integrate Hilt into your project effectively, ensuring clean and maintainable architecture.

Ready to start building your next Android project using Hilt and Jetpack Compose? Dive in and simplify your dependency management now!

#Kotlin #Code4Kotlin

Jetpack Compose: How to use of Row and Column

  Jetpack Compose is a modern toolkit for building native Android UI. Jetpack Compose simplifies and accelerates UI development on Android with less code, powerful tools, and intuitive Kotlin APIs.

You won't be editing any XML layouts or using the Layout Editor. Instead, you will call composable functions to define what elements you want, and the Compose compiler will do the rest. 



Use Column to place items vertically on the screen.

use Row to place items horizontally on the screen. Both Column and Row support configuring the alignment of the elements they contain.

In many cases, you can just use Compose's standard layout elements.

Here is the sample code ✌:

class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContent {
JetpackComoseTutorialsTheme {
// A surface container using the 'background' color from the theme
ActorCard(Actor("John Wick", "Actor", 49))
}
}
}
}

data class Actor(val name:String, val profession: String, val age: Int)

@Composable
fun ActorCard(actor: Actor) {
Card(modifier = Modifier.fillMaxWidth().padding(all = 4.dp)) {
Row(modifier = Modifier.padding(all = 8.dp)) {
Image(
painter = painterResource(R.drawable.profile),
contentDescription = null,
modifier = Modifier
.size(40.dp)
.clip(CircleShape)
.border(2.dp, MaterialTheme.colorScheme.primary, CircleShape),
alignment = Alignment.BottomCenter
)

Spacer(modifier = Modifier.width(4.dp))

Column {
Row {
Text(
text = actor.name,
style = MaterialTheme.typography.titleMedium,
color = MaterialTheme.colorScheme.secondary
)
Text(
text = ", "+actor.age.toString(),
style = MaterialTheme.typography.titleMedium,
color = MaterialTheme.colorScheme.secondary
)
}

Spacer(modifier = Modifier.height(4.dp))
Text(text = actor.profession)
}
}
}
}class MainActivity : ComponentActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContent {
JetpackComoseTutorialsTheme {
// A surface container using the 'background' color from the theme
ActorCard(Actor("John Wick", "Actor", 49))
}
}
}
}

data class Actor(val name:String, val profession: String, val age: Int)

@Composable
fun ActorCard(actor: Actor) {
Card(modifier = Modifier.fillMaxWidth().padding(all = 4.dp)) {
Row(modifier = Modifier.padding(all = 8.dp)) {
Image(
painter = painterResource(R.drawable.profile),
contentDescription = null,
modifier = Modifier
.size(40.dp)
.clip(CircleShape)
.border(2.dp, MaterialTheme.colorScheme.primary, CircleShape),
alignment = Alignment.BottomCenter
)

Spacer(modifier = Modifier.width(4.dp))

Column {
Row {
Text(
text = actor.name,
style = MaterialTheme.typography.titleMedium,
color = MaterialTheme.colorScheme.secondary
)
Text(
text = ", "+actor.age.toString(),
style = MaterialTheme.typography.titleMedium,
color = MaterialTheme.colorScheme.secondary
)
}

Spacer(modifier = Modifier.height(4.dp))
Text(text = actor.profession)
}
}
}
}


Sample output :


Happy Coding ✌.